정답: 3번 코일의 소비 전력은 \( P = VI \cos \phi \)로 주어집니다. 여기서 \( V = 100 \, \text{V} \), \( I = 30 \, \text{A} \), \( P = 1.8 \, \text{kW} = 1800 \, \text{W} \)입니다. 역률 \(\cos \phi\)는 \( \cos \phi = \frac{P}{VI} = \frac{1800}{100 \times 30} = 0.6 \)입니다. 리액턴스 \( X_L \)는 \( X_L = \frac{V}{I \sin \phi} \)로 구할 수 있습니다. \(\sin \phi = \sqrt{1 - \cos^2 \phi} = \sqrt{1 - 0.6^2} = 0.8\)이므로, \[ X_L = \frac{100}{30 \times 0.8} \approx 4.17 \, \Omega \] 따라서 콘덴서의 용량 리액턴스는 \( X_L \)와 같아야 전반적인 역률이 100%가 됩니다. 따라서 약 4.17 \(\Omega\)입니다.