자기모멘트 \( M \)는 자화의 세기 \( J \)와 부피 \( V \)의 곱으로 계산됩니다. 이때 자화의 세기 \( J = 0.5 \, \text{Wb/m}^2 \)입니다. 원통의 부피 \( V \)는 다음과 같이 계산됩니다: \[ V = \pi r^2 h \] 여기서 반지름 \( r = 1 \, \text{cm} = 0.01 \, \text{m} \)이고, 높이 \( h = 10 \, \text{cm} = 0.1 \, \text{m} \)입니다. \[ V = \pi (0.01)^2 (0.1) = \pi \times 10^{-4} \times 0.1 = \pi \times 10^{-5} \, \text{m}^3 \] 자기모멘트 \( M \)는 다음과 같이 계산됩니다: \[ M = J \times V = 0.5 \times \pi \times 10^{-5} \] \[ M = 0.5 \pi \times 10^{-5} \approx 1.57 \times 10^{-5} \, \text{Wbm} \] 따라서, 정답은 보기 1입니다.