두 자극 사이에 작용하는 힘을 계산합니다.  문제에 주어진 정보 첫 번째 자극의 세기는 \(m_{1}=4\times 10^{-5}\text{Wb}\) 입니다. 두 번째 자극의 세기는 \(m_{2}=6\times 10^{-3}\text{Wb}\) 입니다. 두 자극 사이의 거리는 \(r=10\text{cm}\) 입니다.  유용한 정보  두 자극 사이에 작용하는 힘은 쿨롱의 법칙으로 계산합니다. 쿨롱의 법칙 공식은 \(F=k\frac{m_{1}m_{2}}{r^{2}}\) 입니다. 진공 중의 비례 상수 k는 \(6.33\times 10^{4}\text{Nm}^{2}/\text{Wb}^{2}\) 입니다. 거리는 미터 단위로 변환해야 합니다.  해결 방법  주어진 값을 쿨롱의 법칙 공식에 대입하여 힘을 계산합니다.  거리 단위 변환 거리를 센티미터에서 미터로 변환합니다: \(r=10\text{cm}=0.1\text{m}\) 쿨롱의 법칙 적용 쿨롱의 법칙 공식에 값을 대입합니다: \(F=6.33\times 10^{4}\times \frac{(4\times 10^{-5})\times (6\times 10^{-3})}{(0.1)^{2}}\) 힘 계산 계산을 수행합니다: \(F=6.33\times 10^{4}\times \frac{24\times 10^{-8}}{0.01}\) 계산을 계속합니다: \(F=6.33\times 10^{4}\times 24\times 10^{-6}\) 최종 힘을 계산합니다: \(F=1.5192\text{N}\) 해답  두 자극 사이에 작용하는 힘은 약 \(1.52\text{N}\) 입니다.