정답: 3번 시스템은 직렬 및 병렬로 구성되어 있습니다. 우선 병렬 연결된 부분의 신뢰도를 계산합니다. 병렬 연결된 부분의 신뢰도는 다음과 같습니다. \[ R_{\text{병렬}} = 1 - [(1 - R_B \cdot R_D) \cdot (1 - R_C \cdot R_E) \cdot (1 - R_F)] \] 여기서 \( R_B = R_C = R_D = R_E = 0.8 \), \( R_F = 0.9 \)입니다. \[ R_B \cdot R_D = 0.8 \cdot 0.8 = 0.64 \] \[ R_C \cdot R_E = 0.8 \cdot 0.8 = 0.64 \] 따라서, \[ R_{\text{병렬}} = 1 - [(1 - 0.64) \cdot (1 - 0.64) \cdot (1 - 0.9)] \] \[ = 1 - [0.36 \cdot 0.36 \cdot 0.1] \] \[ = 1 - 0.01296 \] \[ = 0.98704 \] 전체 시스템의 신뢰도는 직렬 연결된 A와 G를 포함하여: \[ R_{\text{전체}} = R_A \cdot R_{\text{병렬}} \cdot R_G \] 여기서 \( R_A = R_G = 0.75 \)입니다. \[ R_{\text{전체}} = 0.75 \cdot 0.98704 \cdot 0.75 \] \[ = 0.5552 \] 따라서, 시스템의 신뢰도는 약 0.5552로, 3번 보기가 맞습니다.