연속·베르누이: $$ A_1V_1=A_2V_2,\quad P_1+\tfrac12\rho V_1^2=P_2+\tfrac12\rho V_2^2 $$ $D_1=0.20\,\text{m}, D_2=0.10\,\text{m}\Rightarrow A_1/A_2=4,\ V_2=4V_1$ $$ V_1=\sqrt{\frac{P_1-P_2}{7.5\rho}} =\sqrt{\frac{(98-29.42)\times10^3}{7.5\times1000}} \approx 3.02\,\text{m/s},\quad V_2\approx12.10\,\text{m/s} $$ $\dot m=\rho A_1V_1=1000\cdot\frac{\pi(0.2)^2}{4}\cdot3.02\approx94.9\,\text{kg/s}$ x-방향 운동량 방정식(출구 속도는 좌향, $V_2=-12.10$): $$ R_x=\dot m\,(V_2-V_1)-(P_1A_1+P_2A_2) $$ $$ =94.9(-12.10-3.02) $$ $$ -(98\times10^3\cdot A_1+29.42\times10^3\cdot A_2) \approx-4.74\times10^3\,\text{N} $$ 따라서 필요한 고정력의 크기 $=4.744\,\text{kN}$ 정답: ④ 4744