총 손실 전력량은 철손과 동손의 합으로 계산하며, 이는 운전 부하에 따라 달라집니다. - **철손(\(P_i\))**: 부하의 크기와 관계없이 항상 일정합니다. 문제에서 7.5 W입니다. - **동손(\(P_c\))**: 부하의 제곱에 비례하여 변합니다. 전부하 동손은 16 W입니다. #### 1. 처음 2시간 (전부하 운전) - 철손 손실: \(7.5 \text{ W} \times 2 \text{ h} = 15 \text{ Wh}\) - 동손 손실: \(16 \text{ W} \times 2 \text{ h} = 32 \text{ Wh}\) - 총 손실: \(15 \text{ Wh} + 32 \text{ Wh} = 47 \text{ Wh}\) #### 2. 다음 2시간 (1/2 부하 운전) - 철손 손실: \(7.5 \text{ W} \times 2 \text{ h} = 15 \text{ Wh}\) - 동손 손실: 부하율(\(m\))의 제곱에 비례합니다. - \(m = \frac{1}{2}\) - \(P_{c'} = m^2 \times P_c = (\frac{1}{2})^2 \times 16 \text{ W} = \frac{1}{4} \times 16 = 4 \text{ W}\) - 동손 손실량: \(4 \text{ W} \times 2 \text{ h} = 8 \text{ Wh}\) - 총 손실: \(15 \text{ Wh} + 8 \text{ Wh} = 23 \text{ Wh}\) #### 3. 4시간에 걸친 총 전력 손실량 - 처음 2시간의 손실과 다음 2시간의 손실을 더합니다. - 총 손실량: \(47 \text{ Wh} + 23 \text{ Wh} = 70 \text{ Wh}\)